Математическая Логика, решение задач/variant 2004
Материал из eSyr's wiki.
м (→Задача 2) |
м (→Задача 6) |
||
Строка 59: | Строка 59: | ||
¬(∃ y (φ<sub>1</sub>(y) & ∀ y<sub>1</sub> ∀ y<sub>2</sub> (φ<sub>1</sub>(y<sub>1</sub>) & φ<sub>1</sub>(y<sub>2</sub>) & ¬φ<sub>2</sub>(y<sub>1</sub>, y<sub>2</sub>, y)))) | ¬(∃ y (φ<sub>1</sub>(y) & ∀ y<sub>1</sub> ∀ y<sub>2</sub> (φ<sub>1</sub>(y<sub>1</sub>) & φ<sub>1</sub>(y<sub>2</sub>) & ¬φ<sub>2</sub>(y<sub>1</sub>, y<sub>2</sub>, y)))) | ||
+ | |||
+ | == Табличный вывод == | ||
+ | === Правила === | ||
+ | # <math>L\neg:\frac{<\phi,\Gamma|\Delta>}{<\Gamma|\phi,\Delta>}</math> | ||
+ | # <math>R\neg:\frac{<\Gamma|\neg\phi,\Delta>}{<\phi,\Gamma|\Delta>}</math> | ||
+ | # <math>L\and:\frac{<\phi_1\and\phi_2,\Gamma|\Delta>}{<\phi_1,\phi_2,\Gamma|\Delta>}</math> | ||
+ | # <math>R\and:\frac{<\Gamma|\phi_1\and\phi_2,\Delta>}{<\Gamma|\phi_1,\Delta><\Gamma|\phi_2,\Delta>}</math> | ||
+ | # <math>L\lor:\frac{<\phi_1\lor\phi_2,\Gamma|\Delta>}{<\phi_1,\Gamma|\Delta><\phi_2,\Gamma|\Delta>}</math> | ||
+ | # <math>R\lor:\frac{<\Gamma|\phi_1\lor\phi_2,\Delta>}{<\Gamma|\phi_1,\phi_2,\Delta>}</math> | ||
+ | # <math>L\to:\frac{<\phi_1\to\phi_2,\Gamma|\Delta>}{<\phi_2,\Gamma|\phi_1,\Delta>}</math> | ||
+ | # <math>R\to:\frac{<\Gamma|\phi_1\to\phi_2,\Delta>}{<\phi_1,\Gamma|\phi_2,\Delta>}</math> | ||
+ | |||
+ | ==== Дополнительные правила ==== | ||
+ | # <math>L\forall:\frac{<\forall x\phi(x),\Gamma|\Delta>}{<\forall x\phi(x),\phi(x)\{^x/_t\},\Gamma|\Delta>}</math>, при условии, что переменная ''x'' свободна в ''φ(x)'' для терма ''t''. | ||
+ | # <math>R\forall:\frac{<\Gamma|\forall x\phi(x),\Delta>}{<\Gamma|\phi(x)\{^x/_c\},\Delta>}</math>, где ''c'' — константа, которая не содержитсяв Γ, Δ или ''φ(x)'' | ||
+ | # <math>L\exist:\frac{<\exist x\phi(x),\Gamma|\Delta>}{<\phi(x)\{^x/_c\},\Gamma|\Delta>}</math> | ||
+ | # <math>R\exist:\frac{<\Gamma|\exist x\phi(x),\Delta>}{<\Gamma|\exist x\phi(x),\phi(x)\{^x/_t\},\Delta>}</math> | ||
{{Курс Математическая Логика}} | {{Курс Математическая Логика}} |
Версия 03:35, 22 января 2008
Содержание |
Построение предиката по утверждению
Условные обозначения
- почти все = все, кроме конечного числа;
Доступные предикаты
- R(x) — вещественное число;
- N(x) — натуральное число;
- S(y) — y — последовательность действительных чисел;
- E(x, n, y) — x — элемент y с номером n;
- A(p, y) — p — предельная точка последовательности y;
- M(x, y) — x — предел последовательности y;
- x < y, x = y — сравнение и равенство.
Задача 1
Какова бы ни была последовательность действительных чисел и отрезок [a, b] действительных чисел, если бесконечно много элементов этой последовательности содержится в данном отрезке, то хотя бы одна предельная точка данной последовательности также сожержится в этом отрезке.
φ1 = (R(a) & R(b) & (a ≤ b)) φ2 = ∀ n1 (N(n1) & ∃ n2 (N(n2) & (n2 ≥ n1) & ∃ x1 (E(x1, n2, y) & ((a ≤ x1) & (x1 ≤ b)))) φ3 = ∃ p (A(p, y) & ((a ≤ p) & (p ≤ b))) ∀ a ∀ b ∀ y (S(y) & φ1 & φ2 & (S(y) & φ1 & φ2 → φ4))
Задача 2
Какова бы ни была последовательность действительных чисел, найдется отрезок, содержащий все ее предельные точки.
∀ y S(y) & ∃ a ∃ b (R(a) & R(b) & (a ≤ b) ∀ p (A(p, y) & (a ≤ p) & (p ≤ b))))
Задача 3
Каков бы ни был отрезок [a,b] действительных чисел, если почти все элементы произвольной последовательности действительных чисел лежат вне этого отрезка, то и все предельные точки этой последовательности лежат вне этого отрезка.
φ1 = (R(a) & R(b) & (a ≤ b)) φ2 = ∃ n1 (N(n1) & ∀ n2 (N(n2) & (n2 ≥ n1) & ∀ x1 (E(x1, n2, y) & ((a > x1) ∨ (x1 > b)))) φ3 = ∀ p (A(p, y) & ((a > p) & (p > b))) ∀ a ∀ b ∀ y (S(y) & φ1 & φ2 & (S(y) & φ1 & φ2 → φ3))
Задача 4
Какова бы ни была последовательность действительных чисел, если эта последовательность содержит отрицательный элемент, то найдется хотя бы одна неположительная предельная точка этой последовательности.
φ1 = ∃ x ∃ n (R(x) & N(n) & E(x, n, y) & (x < 0)) φ2 = ∃ p (A(p, y) & (p ≤ 0)) ∀ y (S(y) & φ1 & (S(y) & φ1 → φ2))
Задача 5
Каковы бы ни были две последовательности действительных чисел такие, что первая одна из них → 0, а другая ограничена, тогда из произведение тоже → 0.
φ1 = ∀ n (N(n) & &exist x; ∃ M (R(M) & R(x) & E(x, n, y) & (x < M))) φ2 = ∃ y3 (S(y3) & ∀ n (N(n) ∃ x1 ∃ x2 ∃ x3 (E(x1, n, y1) & E(x2, n, y2) & E(x3, n, y3) & (x3 = x1 × x2)))) ∀ y1 ∀ y2 (S(y1) & S(y2) & M(0, y1) & φ1 & φ2 & (S(y1) & S(y2) & M(0, y) & φ1 & φ2 → M(0, y3)))
Задача 6
Нет такой сходящейся последовательности, что ее нельзя было бы представить как сумму двух сходящихся последовательностей.
φ1(y) = S(y) & ∃ m (R(m) & (m, y)) φ2(y1, y2, y3) = (S(y3) & ∀ n (N(n) ∃ x1 ∃ x2 ∃ x3 (E(x1, n, y1) & E(x2, n, y2) & E(x3, n, y3) & (x3 = x1 × x2)))) ¬(∃ y (φ1(y) & ∀ y1 ∀ y2 (φ1(y1) & φ1(y2) & ¬φ2(y1, y2, y))))
Табличный вывод
Правила
Дополнительные правила
- , при условии, что переменная x свободна в φ(x) для терма t.
- , где c — константа, которая не содержитсяв Γ, Δ или φ(x)
|
|
Ссылки
Официальная страница курса | Задачи
Проведение экзамена | Решение задач: Решение задач методички | Решение задач варианта экзамена 2004 года | Алгоритмы решения задач